
Chapter

10 The Greedy Method

Civil War Knapsack. U.S. government image. Vicksburg
National Military Park. Public domain.

Contents

10.1 The Fractional Knapsack Problem . . . . . . . . . . . . 286

10.2 Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . 289

10.3 Text Compression and Huffman Coding . . . . . . . . . 292

10.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 298



284 Chapter 10. The Greedy Method

Suppose you are designing a new online auction website that is intended to

process bids for multi-lot auctions. That is, this website should be able to handle

a single auction for 100 units of the same digital camera or 500 units of the same

smartphone, where bids could be of the form, “x units for $y,” meaning that the

bidder wants a quantity of x of the items being sold and is willing to pay $y for all

x of them. The challenge for your website is that it must allow for a large number

of bidders to place such multi-lot bids and it must decide which bidders to choose

as the winners.

Naturally, in order to maximize sales commissions, the website managers are

interested in you designing the website so that it always chooses a set of winning

bids that maximizes the total amount of money paid for the items being auctioned.

So how do you decide which bidders to choose as the winners?

One way is to use the technique we discuss in this chapter—the greedy method.

This algorithm design paradigm involves repeatedly making choices that optimize

some objective function, like repeatedly accepting the bid that maximizes the price-

per-unit. The trick in applying this technique is guaranteeing that such a local

“greedy” choice can always lead to an optimal solution.

Proving that the greedy method can indeed lead to an optimal solution can

often require deeper understanding of the problem being solved, though, so we

may need to make additional assumptions in order for it to work. For instance, for

the problem of deciding which bidders to accept, this greedy strategy can work only

if you are allowed to partially satisfy bids. That is, the greedy strategy works if you

can satisfy a bid to buy x units for $y by selling k < x units for $yk/x. In fact,

this problem is equivalent to a problem we study in more detail in this chapter—the

fractional knapsack problem.

In the knapsack problem, we are given a set of n items, each having a weight

and a benefit, and we are interested in choosing the set of items that maximize

our total benefit while not going over the weight capacity of the knapsack. So,

in this case, each bid is an item, with its “weight” being the number of units being

requested and its benefit being the amount of money being offered. In this particular

instance, where bids can be satisfied with a partial fulfillment, then it is an instance

of the fractional knapsack problem, for which the greedy method works to find

an optimal solution. Interestingly, for the “0-1” version of the problem, where

fractional choices are not allowed, then the greedy method may not work. In fact,

solving this problem for all possible inputs is quite difficult—it is discussed in

Section 17.5 in the context of NP-completeness.

Still, there are several other problems, which we discuss in this chapter, for

which the greedy methods works to find an optimal solution. These include prob-

lems for task scheduling and text compression. Incidentally, this technique is

also used in Chapter 14, to derive efficient algorithms for finding shortest paths

in weighted graphs, Chapter 15, to construct minimum spanning trees, and Sec-

tion 18.2.2, to find approximate solutions to the SET-COVER problem.



285

The Greedy Method

The greedy method is applied to optimization problems—that is, problems that in-

volve searching through a set of configurations to find one that minimizes or max-

imizes an objective function defined on these configurations. The general formula

of the greedy method could not be simpler—in order to solve a given optimization

problem, we proceed by a sequence of choices. The sequence of choices starts from

some well-understood starting configuration, and then iteratively makes the deci-

sion that is best from all of those that are currently possible, in terms of improving

the objective function. (See Figure 10.1.)

Figure 10.1: An example of the greedy method. Each rectangle represents a con-

figuration whose score is the objective function. A configuration has three choices,

each of which provides a different incremental improvement to the score. The bold

choices are the ones that are picked in each step according to the greedy strategy.

This greedy approach does not always lead to an optimal solution, but there

are several problems that it does work optimally for, and such problems are said

to possess the greedy-choice property. This is the property that a global optimal

configuration can be reached by a series of locally optimal choices (that is, choices

that are the best from among the possibilities available at the time), starting from a

well-defined configuration.



286 Chapter 10. The Greedy Method

10.1 The Fractional Knapsack Problem

Consider the fractional knapsack problem, where we are given a set S of n items,

such that each item i has a positive benefit bi and a positive weight wi, and we wish

to find the maximum-benefit subset that does not exceed a given weight W . If we

are restricted to entirely accepting or rejecting each item, then we would have the

0-1 version of this problem (for which we give a dynamic programming solution

in Section 12.6). Let us now allow ourselves to take arbitrary fractions of some

elements, however. The motivation for this fractional knapsack problem is that we

are going on a trip and we have a single knapsack that can carry items that together

have weight at most W . In addition, we are allowed to break items into fractions

arbitrarily. That is, we can take an amount xi of each item i such that

0 ≤ xi ≤ wi for each i ∈ S and
∑

i∈S

xi ≤ W.

The total benefit of the items taken is determined by the objective function

∑

i∈S

bi(xi/wi).

(See Figure 10.2.)

Figure 10.2: The fractional knapsack problem.

Consider, for example, a student who is going to an outdoor sporting event and

must fill a knapsack full of foodstuffs to take along. As long as each candidate

foodstuff is something that can be easily divided into fractions, such as drinks,

potato chips, popcorn, and pizza, then this would be an instance of the fractional

knapsack problem.



10.1. The Fractional Knapsack Problem 287

Using the Greedy Method to Solve the Fractional Knapsack Problem

When considering the fractional knapsack problem, this is one place where the

greedy method can be applied successfully, for we can solve the fractional knapsack

problem using the greedy approach.

In applying the greedy method, the most important decision is to determine

the objective function that we wish to optimize. For example, we could choose to

include items into our knapsack based on their weights, say, taking items in order

by increasing weights. The intuition behind this approach is that the lower-weight

items consume the least amount of the weight resource of the knapsack. Unfortu-

nately, this first idea doesn’t work. It is easy to construct examples where choosing

items in order by their weights leads to suboptimal solutions. For example, even

with just two items, with weight-benefit pairs of (1, 10) and (10, 200), this weight-

based greedy approach, with a knapsack of weight 10, chooses 1 unit of item 1 and

9 units of item 2, for a total benefit of 10 + 180 = 190, whereas just taking item 2
would get a benefit of 200.

Another possibility is to choose items in order based on their benefits, but again

it is easy to construct examples where this results in a suboptimal strategy (see

Exercise C-10.1). A much better approach is to rank the items by their value, which

we define to be the ratio of their benefits and weights. The intuition behind this is

that benefit-per-weight-unit is a natural measurement of the inherent value that each

item possesses. Indeed, this approach leads to an efficient algorithm that finds an

optimal solution to the fractional knapsack problem. We describe the details of this

approach in Algorithm 10.3.

Algorithm FractionalKnapsack(S, W ):

Input: Set S of items, such that each item i ∈ S has a positive benefit bi and a

positive weight wi; positive maximum total weight W
Output: Amount xi of each item i ∈ S that maximizes the total benefit while

not exceeding the maximum total weight W

for each item i ∈ S do

xi ← 0
vi ← bi/wi // value index of item i

w ← 0 // total weight

while w < W and S 	= ∅ do

remove from S an item i with highest value index // greedy choice

a ← min{wi, W − w} // more than W − w causes a weight overflow

xi ← a
w ← w + a

Algorithm 10.3: A greedy algorithm for the fractional knapsack problem.



288 Chapter 10. The Greedy Method

Analyzing the Greedy Algorithm for the Fractional Knapsack Problem

The above FractionalKnapsack algorithm can be implemented in O(n log n) time,

where n is the number of items in S. Specifically, we can use a heap-based priority

queue (Section 5.3) to store the items of S, where the key of each item is its value

index. With this data structure, each greedy choice, which removes the item with

greatest value index, takes O(log n) time.

Alternatively, we could even sort the items by their benefit-to-weight values,

and then process them in this order. This would require O(n log n) time to sort

the items and then O(n) time to process them in the while-loop of Algorithm 10.3.

Either way, we have that the greedy algorithm for solving the fractional knapsack

problem can be implemented in O(n log n) time. The following theorem summa-

rizes this fact and also shows that this algorithm is correct.

Theorem 10.1: Given a collection S of n items, such that each item i has a ben-
efit bi and weight wi, we can construct a maximum-benefit subset of S, allowing
for fractional amounts, that has a total weight W in O(n log n) time.

Proof: To see that our algorithm (10.3) for solving the fractional knapsack prob-

lem is correct, suppose, for the sake of contradiction, that there is an optimal solu-

tion better than the one chosen by this greedy algorithm. Then there must be two

items i and j such that

xi < wi, xj > 0, and vi > vj .

Let

y = min{wi − xi, xj}.

But then we could then replace an amount y of item j with an equal amount of

item i, thus increasing the total benefit without changing the total weight, which

contradicts the assumption that this non-greedy solution is optimal. Therefore, we

can correctly compute optimal amounts for the items by greedily choosing items

by increasing benefit-to-weight values.

The proof of this theorem uses an exchange argument to show that the greedy

method works to solve this problem optimally. The general structure of such an

argument is a proof by contradiction, where we assume, for the sake of reaching a

contradiction, that there is a better solution than one found by the greedy algorithm.

We then argue that there is an exchange that we could make among the components

of this solution that would lead to a better solution. In this case, this approach shows

that the greedy method can effectively be used to solve the fractional knapsack

problem. Incidentally, the all-or-nothing, or “0-1” version of the knapsack problem

does not have an efficient greedy solution, however, and solving this version of the

problem is much harder, as we explore in Sections 12.6 and 17.5.



10.2. Task Scheduling 289

10.2 Task Scheduling

Suppose we are given a set T of n tasks such that each task i has a start time, si,

and a finish time, fi (where si < fi). Task i must start at time si and must finish by

time fi. Each task has to be performed on a machine and each machine can execute

only one task at a time. Two tasks i and j are said to be nonconflicting if they do

not overlap in time, i.e., fi ≤ sj or fj ≤ si. Clearly, two tasks can be scheduled to

be executed on the same machine only if they are nonconflicting.

The task scheduling problem we consider here is to schedule all the tasks in

T on the fewest machines possible in a nonconflicting way. Alternatively, we can

think of the tasks as meetings that we must schedule in as few conference rooms as

possible. (See Figure 10.4.)

1 98765432

Machine 1

Machine 3

Machine 2

Figure 10.4: An illustration of a solution to the task scheduling prob-

lem, for tasks whose collection of pairs of start times and finish times is

{(1, 3), (1, 4), (2, 5), (3, 7), (4, 7), (6, 9), (7, 8)}.

There are several ways we might wish to solve this problem using the greedy

method. As with any greedy strategy, the challenge is to find the right objective

function. For example, we might consider the tasks from longest to shortest, as-

signing them to machines based on the first one available, since the longest tasks

seem like they would be the hardest to schedule. Unfortunately, this approach does

not necessarily result in an optimal solution, as is shown in Figure 10.5.

Figure 10.5: Why the longest-first strategy doesn’t work, for the pairs of start and

finish times in the set {(1, 4), (5, 9), (3, 5), (4, 6)}; (a) the solution chosen by the

longest-first strategy; (b) the optimal solution. Note that the longest-first strategy

uses three machines, whereas the optimal strategy uses only two.



290 Chapter 10. The Greedy Method

A Better Greedy Approach to Task Scheduling

Another greedy approach is to consider the tasks ordered by increasing start times.

In this case, we would consider each task by the order of its start time, and assign it

to the first machine that is available at that time. If there are no available machines,

however, then we would need to allocate a new machine and schedule this task on

that machine. The intuition behind this approach is that, by processing tasks by

their start times, when we process a task for a given start time we will have already

processed all the other tasks that would conflict with this starting time. We give the

details of this greedy algorithm in Algorithm 10.6.

Algorithm TaskSchedule(T ):

Input: A set T of tasks, such that each task has a start time si and a finish

time fi

Output: A nonconflicting schedule of the tasks in T using a minimum number

of machines

m ← 0 // optimal number of machines

while T 	= ∅ do

remove from T the task i with smallest start time si

if there is a machine j with no task conflicting with task i then

schedule task i on machine j
else

m ← m + 1 // add a new machine

schedule task i on machine m

Algorithm 10.6: A greedy algorithm for the task scheduling problem.

We show an example solution produced by this algorithm in Figure 10.7, using

the same set of tasks used in Figure 10.4. Note that even though this is an optimal

solution, it is not the same as the optimal solution shown in Figure 10.4.

Figure 10.7: An example solution produced by the greedy algorithm based on con-

sidering tasks by increasing start times.



10.2. Task Scheduling 291

Analysis of the Greedy Task Scheduling Algorithm

So, in words, in the above algorithm, TaskSchedule, we begin with no machines

and we consider the tasks in a greedy fashion, ordered by their start times. For

each task i, if we have a machine that can handle task i, then we schedule i on that

machine, say, choosing the first such available machine. Otherwise, we allocate a

new machine, schedule i on it, and repeat this greedy selection process until we

have considered all the tasks in T .

The following theorem states that greedy method TaskSchedule (Algo-

rithm 10.6) produces an optimal solution, because we are always considering a

task starting at a given time after we have already processed all the tasks that might

conflict with this start time.

Theorem 10.2: Given a set of n tasks specified by their start and finish times, the
Algorithm TaskSchedule produces, in O(n log n) time, a schedule for the tasks
using a minimum number of machines.

Proof: Let k be the last machine allocated by algorithm TaskSchedule, and

let i be the first task scheduled on k. When we scheduled i, each of the machines

1 through k − 1 contained tasks that conflict with i. Since they conflict with i
and because we consider tasks ordered by their start times, all the tasks currently

conflicting with task i must have start times less than or equal to si, the start time of

i, and have finish times after si. In other words, these tasks not only conflict with

task i, they all conflict with each other. But this means we have k tasks in our set

T that conflict with each other, which implies it is impossible for us to schedule all

the tasks in T using only k − 1 machines. Therefore, k is the minimum number of

machines needed to schedule all the tasks in T .

We leave as a simple exercise (R-10.2) the job of showing how to implement

the Algorithm TaskSchedule in O(n log n) time.

Note that the proof of this theorem does not use an exchange argument to prove

the correctness of the greedy algorithm we used in this case. Instead, the above

proof uses a lower-bound argument, which is another technique for proving greedy

algorithms are correct. In using this technique, we argue that any solution to our

problem will require a cost of at least some given parameter and we then show that

the greedy algorithm achieves this lower bound as an upper bound. In the above

proof, we used the parameter k for this purpose.



292 Chapter 10. The Greedy Method

10.3 Text Compression and Huffman Coding

In this section, we consider another application of the greedy method—to text com-

pression. In this problem, we are given a string X defined over some alphabet, such

as the ASCII or Unicode character sets, and we want to efficiently encode X into

a small binary string Y (using only the characters 0 and 1). Text compression is

useful in any situation where we are communicating over a low-bandwidth channel,

such as a slow wireless or satellite connection, and we wish to minimize the time

needed to transmit our text. Likewise, text compression is also useful for storing

collections of large documents more efficiently, to allow a computational device

with a small amount of storage to contain as many documents as possible.

Standard encoding schemes, such as the ASCII and Unicode systems, use fixed-

length binary strings to encode characters, with 7 bits in the ASCII system and 16
in the Unicode system. So, for example, an English document whose length is 100

million characters would require at least 7 megabits to represent in ASCII and 16

megabits to represent in Unicode. This is a waste of bits, however, since there are

some characters that are hardly ever used and others, like the letters “e” and “t,”

that are used so often that it is shame to be using the same number of bits for them

as the seldomly used characters.

An alternative to such fixed-length encoding schemes, then, is a variable-length

encoding scheme, where the codes for various characters are allowed to have dif-

ferent lengths. Ideally, we would like the most-frequently used characters to use

the fewest number of bits, and the least-frequently used characters to use the most.

To encode a string X , we would then represent each character in X with its associ-

ated variable-length code word, and we concatenate all these code words in order

to produce a binary representation, Y , for X .

In order to avoid ambiguities in this approach, we insist that our encoding

scheme be a prefix code, that is, we insist that no code word in our scheme is a

prefix of any other code word in our scheme. The advantage of using such a prefix

code is that decoding can be accomplished by using the greedy strategy of pro-

cessing the bits of Y in order, repeatedly matching bits to the first code word they

represent. Moreover, the savings produced by a variable-length prefix code can be

significant, particularly if there is a wide variance in character frequencies (as is the

case for natural language text in almost every spoken language).

The challenge, of course, is that to get the maximum compression possible with

this approach we want to guarantee that high-frequency characters are assigned to

short code words and low-frequency characters are assigned to longer code words.

In other words, to get the maximum compression for X based on this approach, our

code words must be chosen based on the frequencies of how characters appear in

X . So, let us assume that we have, for each character, c, in X , a count, f(c), of the

number of times c appears in the string X .



10.3. Text Compression and Huffman Coding 293

Huffman Coding

An interesting greedy approach to solving the text compression problem using this

approach is Huffman coding. This method produces a variable-length prefix code

for X based on the construction of a proper binary tree T that represents the code.

Each edge in T represents a bit in a code word, with each edge to a left child

representing a “0” and each edge to a right child representing a “1.” Each external

node v is associated with a specific character, and the code word for that character

is defined by the sequence of bits associated with the edges in the path from the

root of T to v.

Since characters are associated only with external nodes, and no internal node is

associated with any code word, such a scheme produces a prefix code. Put another

way, if we start matching bits in X based on the path that they trace out in T , then

the external node that we reach will correspond to the character represented by the

code word this string of bits is equal to. (See Figure 10.8.)

(a)
Character

Frequency

a b d e f h i k n o r s t u v

9 5 1 3 7 3 1 1 1 4 1 5 1 2 1 1

(b)

19

46

27

151210

87

4

5er

fd n

a

tb h

ki o s vu

2

42

2 2

1 1

11 1 1 1 1

2

5

3

7

3 4

5

9

Figure 10.8: An illustration of an example Huffman code for the input string

X = "a fast runner need never be afraid of the dark": (a)

frequency of each character of X; (b) Huffman tree T for string X . The code for a

character c is obtained by tracing the path from the root of T to the external node

where c is stored, and associating a left child with 0 and a right child with 1. For

example, the code for “a” is 010, and the code for “f” is 1100.



294 Chapter 10. The Greedy Method

The Huffman Coding Algorithm

The critical part of the Huffman coding algorithm is to construct the tree, T , so

that it represents a good prefix code. We begin with a collection, C, of characters,

with each character c in C having a numeric weight, f(c), which we think of as its

frequency.

Each external node v in T is associated with a character and has a frequency,

f(v), which is the frequency in X of the character associated with v. For each

internal node, v, in T , we associate a total frequency, f(v), which is the sum of

the frequencies of all the external nodes in the subtree rooted at v. The remaining

optimization problem involves choosing how T is structured so as to determine an

optimal prefix code.

Let T be a binary tree, defined as above, with a numeric weight, f(v), assigned

to each external node, v in T , and a weight, f(v), assigned to each internal node,

v, that is the sum of the weights of its external-node descendants. Define the total

path weight, p(T ), of T to be the sum of all the weights in T . That is, define p(T )
as follows:

p(T ) =
∑

v∈T

f(v).

Note that this is equivalent to us summing, over all the external nodes of T , the

product of each external node’s weight and its depth. That is, given a set C of

characters, where each c in C is given a (frequency) weight, f(c), we can also

characterize the total path weight of T as

p(T ) =
∑

c∈C

f(c) · d(vc),

where vc is the external node associated with the character c in C and d(vc) is the

depth of vc in T .

The goal is for us to construct T so that it has minimum total path weight over

all binary trees having external nodes associated with the characters in C, using

the frequency of each character in C as the weight of its associated external node.

(This property was true, for instance, in the tree shown in Figure 10.8b.) Thus, the

problem of constructing an optimal prefix code can be reduced to the problem of

constructing a binary tree with minimum total path weight.

The Huffman coding algorithm begins with a set, C, of characters that are the

d distinct characters from the string X , such that each such character is associated

with the root node of a single-node binary tree. The algorithm proceeds in a series

of rounds. In each round, the algorithm takes the two binary trees with the smallest

weight at their respective roots and merges them into a single binary tree, giving

the root of the new tree the sum of the roots of the two merged trees. The algorithm

then repeats this process until only one tree is left. (See Algorithm 10.9.)



10.3. Text Compression and Huffman Coding 295

Algorithm Huffman(C):

Input: A set, C, of d characters, each with a given weight, f(c)
Output: A coding tree, T , for C, with minimum total path weight

Initialize a priority queue Q.

for each character c in C do

Create a single-node binary tree T storing c.

Insert T into Q with key f(c).
while Q.size() > 1 do

f1 ← Q.minKey()
T1 ← Q.removeMin()
f2 ← Q.minKey()
T2 ← Q.removeMin()
Create a new binary tree T with left subtree T1 and right subtree T2.

Insert T into Q with key f1 + f2.

return tree Q.removeMin()

Algorithm 10.9: Huffman coding algorithm.

Analysis of the Huffman Coding Algorithm

Each iteration of the while-loop in the Huffman coding algorithm can be imple-

mented in O(log d) time using a priority queue represented with a heap. In addi-

tion, each iteration takes two binary trees out of Q and adds one in, all of which

can be done in O(log d) time. This process is repeated d − 1 times before exactly

one node is left in Q. Thus, this algorithm runs in O(d log d) time, assuming we

are given the set, C, of d distinct characters in the string X as input. In addition,

we can construct C from X in O(n) time, including the calculation, for each c in

C, of the frequency, f(c), of how many times the character c appears in X , where

n is the length of X; see Exercise C-10.3.

The correctness argument for the Huffman coding algorithm begins with the

following lemma.

Lemma 10.3: If T is a binary tree, T , with minimum total path weight for a set,
C, of characters, with each c in C having a positive weight, f(c), then T is proper,
that is, each internal node in T has two children.

Proof: Suppose, for the sake of contradiction, that T has an internal node, v, with

only one child, w. Then we can replace v with w and T will have the same set of

external nodes as before, but each node in the subtree rooted at T will have its depth

reduced by 1. Since the weights for the characters in C are positive, this implies

that the total path weight for the new tree is less than T , which is impossible, since

T is a binary tree with minimum total path weight.

In addition, the following lemma is also important.



296 Chapter 10. The Greedy Method

Lemma 10.4: Given a set, C, of characters, with a positive weight, f(c), defined
for each c in C, two characters, b and c, with the smallest two weights, are associ-
ated with nodes that have the maximum depth and are siblings in a binary tree, T ,
with minimum total path weight for C.

Proof: Let T be a binary tree with minimum total path weight for C. Suppose

that the node for one of b or c does not have maximum depth in T , and let v be

this node and, without loss of generality, let c be the associated character. Then

there must be another external node, w, associated with a character, e, such that

f(e) ≥ f(c) and d(w) > d(v). We can swap the characters for v and w, which will

cause a change in the total path weight of T by the amount

f(c)(d(w) − d(v)) − f(e)(d(w) − d(v)),

which cannot be positive. Thus, c can be associated with a maximum-depth node

without increasing the total weight of T ; hence, there is an optimal tree having a

maximum-depth node associated with c.

To see that b and c can be siblings, note that, since we have already shown that

b and c are at maximum depth in an optimal tree, T , and an optimal tree is proper,

by Lemma 10.3, we can swap a sibling of either b or c to make these two be siblings

without changing the total path weight of T .

We use this lemma to prove the following.

Theorem 10.5: The Huffman coding algorithm constructs an optimal prefix code
for a string of length n with d distinct characters in O(n + d log d) time.

Proof: We have already established the time bound for the Huffman coding

algorithm, as well as the fact that an optimal prefix code can be derived from a

binary tree, T , with minimum total path weight, p(T ), for a set of characters and

weights associated with its external nodes.

We can prove the correctness of the Huffman coding algorithm by induction on

d, the number of characters in C. For the basis, note that for d = 1, the optimal tree

is a single (root) node, and that this is the tree constructed by the Huffman coding

algorithm.

Let T be a tree constructed by the Huffman coding algorithm for a set, C, of

d > 1 characters. After merging two lowest-frequency characters, b and c, in C into

a single tree having a root, r, which has the two associated nodes as its children,

note that the iterative structure of the algorithm is the same as if we had started

with d − 1 characters, including a character for r with frequency f(r). Thus, we

can assume inductively that the tree, T ′, constructed for this set of characters is

optimal. In addition, since b and c are associated with the children of r,

p(T ) = p(T ′) + f(b) + f(c).

Now, let U be an optimal tree for the set C, where, by Lemma 10.4, the nodes

for b and c are siblings. Let U ′ be the tree derived from U by removing the nodes



10.3. Text Compression and Huffman Coding 297

for b and c, but keeping their parent node, which has weight f(b) + f(c). That is,

U ′ is defined on the same set of characters and frequencies as T ′, and

p(U) = p(U ′) + f(b) + f(c).

In addition, since T ′ is optimal,

p(T ′) ≤ p(U ′).

Therefore,

p(T ) = p(T ′) + f(b) + f(c)

≤ p(U ′) + f(b) + f(c)

= p(U).

In other words, T has weight less than or equal to U . But, since U is an optimal

tree, this means that T must be an optimal tree.

How the Huffman Coding Algorithm Uses the Greedy Method

The Huffman coding algorithm for building an optimal prefix code is another ap-

plication of the greedy method. As mentioned above, this technique is applied

to optimization problems, where we are trying to construct some structure while

minimizing or maximizing some property of that structure.

Indeed, the Huffman coding algorithm closely follows the general formula for

the greedy method. Namely, in order to solve the given optimization code problem

using the greedy method, we proceed by a sequence of choices. The sequence

starts from a well-understood starting condition, and computes the cost for that

initial condition. Finally, we iteratively make additional choices by identifying the

decision that achieves the best cost improvement from all of the choices that are

currently possible. This approach does not always lead to an optimal solution, but

it does indeed find the optimal prefix code when used according to the approach of

the Huffman coding algorithm.

This global optimality for the Huffman coding algorithm is due to the fact that

the optimal prefix coding problem possesses the greedy-choice property. This is

the property that a global optimal condition can be reached by a series of locally

optimal choices (that is, choices that are each the current best from among the

possibilities available at the time), starting from a well-defined starting condition.

In this case, the general condition is defined by a set of disjoint binary trees, each

with a given weight for its root, and the greedy choice is to combine two lowest-

weight trees into a single tree.



298 Chapter 10. The Greedy Method

10.4 Exercises

Reinforcement

R-10.1 Let S = {a, b, c, d, e, f, g} be a collection of objects with benefit-weight val-
ues, a : (12, 4), b : (10, 6), c : (8, 5), d : (11, 7), e : (14, 3), f : (7, 1), g : (9, 6).
What is an optimal solution to the fractional knapsack problem for S assuming
we have a sack that can hold objects with total weight 18? Show your work.

R-10.2 Describe how to implement the TaskSchedule method to run in O(n log n)
time.

R-10.3 Suppose we are given a set of tasks specified by pairs of the start times and fin-
ish times as T = {(1, 2), (1, 3), (1, 4), (2, 5), (3, 7), (4, 9), (5, 6), (6, 8), (7, 9)}.
Solve the task scheduling problem for this set of tasks.

R-10.4 Draw the frequency table and Huffman tree for the following string:

"dogs do not spot hot pots or cats".

R-10.5 Give an example set of 10 characters and their associated frequencies so that, in
the Huffman tree for this set, every internal node has an external-node child.

R-10.6 Give an example set of 8 characters and their associated frequencies so that the
Huffman tree for this set is a complete binary tree.

R-10.7 Fred says that he ran the Huffman coding algorithm for the four characters, A,
C, G, and T, and it gave him the code words, 0, 10, 111, 110, respectively. Give
examples of four frequencies for these characters that could have resulted in these
code words or argue why these code words could not possibly have been output
by the Huffman coding algorithm.

R-10.8 Repeat the previous exercise for the code words, 0, 10, 101, 111.

R-10.9 Repeat the previous exercise for the code words, 00, 100, 101, 11.

R-10.10 Indicate for each of the lemmas used in the proof of correctness for the Huffman
coding algorithm whether the proof of that lemma uses an exchange argument or
a lower-bound argument?

Creativity

C-10.1 Provide an example instance of the fractional knapsack problem where a greedy
strategy based on repeatedly choosing as much of the highest-benefit item as
possible results in a suboptimal solution.

C-10.2 Suppose you are given an instance of the fractional knapsack problem in which
all the items have the same weight. Show that you can solve the fractional knap-
sack problem in this case in O(n) time.



10.4. Exercises 299

C-10.3 Given a character string X of length n, describe an O(n)-time algorithm to con-
struct the set, C, of distinct characters that appear in C, along with a count, f(c),
for each c in C, of how many times the character c appears in X . You may as-
sume that the characters in X are encoded using a standard character indexing
scheme, like the ASCII system.

C-10.4 A native Australian named Anatjari wishes to cross a desert carrying only a sin-
gle water bottle. He has a map that marks all the watering holes along the way.
Assuming he can walk k miles on one bottle of water, design an efficient algo-
rithm for determining where Anatjari should refill his bottle in order to make as
few stops as possible. Argue why your algorithm is correct.

C-10.5 Describe an efficient greedy algorithm for making change for a specified value
using a minimum number of coins, assuming there are four denominations of
coins (called quarters, dimes, nickels, and pennies), with values 25, 10, 5, and 1,
respectively. Argue why your algorithm is correct.

C-10.6 Give an example set of denominations of coins so that a greedy change making
algorithm will not use the minimum number of coins.

C-10.7 Suppose T is a Huffman tree for a set of characters having frequencies equal
to the first n nonzero Fibonacci numbers, {1, 1, 2, 3, 5, 8, 13, 21, 34, . . .}, where
f0 = 1, f1 = 1, and fi = fi−1 + fi−2. Prove that every internal node in T has
an external-node child.

C-10.8 Suppose you’ve been sent back in time and have arrived at the scene of an ancient
Roman battle. Moreover, suppose you have just learned that it is your job to
assign n spears to n Roman soldiers, so that each man has a spear. You observe
that the men and spears are of various heights, and you have been told (in Latin)
that the army is at its best if you can minimize the total difference in heights
between each man and his spear. That is, if the ith man has height mi and his
spear has height si, then you want to minimize the sum,

n
∑

i=1

|mi − si|.

Consider a greedy strategy of repeatedly matching the man and spear that min-
imizes the difference in heights between these two. Prove or disprove that this
greedy strategy results in the optimal assignment of spears to men.

C-10.9 Consider again the time-travel problem of the previous exercise, but now consider
a greedy algorithm that sorts the men by increasing heights and sorts the spears
by increasing heights, and then assigns the ith spear in the ordered list of spears
to the ith man in the ordered list of Roman soldiers. Prove or disprove that this
greedy strategy results in the optimal assignment of spears to men.

C-10.10 Suppose you are organizing a party for a large group of your friends. Your friends
are pretty opinionated, though, and you don’t want to invite two friends if they
don’t like each other. So you have asked each of your friends to give you an
“enemies” list, which identifies all the other people among your friends that they
dislike and for whom they know the feeling is mutual. Your goal is to invite
the largest set of friends possible such that no pair of invited friends dislike each



300 Chapter 10. The Greedy Method

other. To solve this problem quickly, one of your relatives (who is not one of your
friends) has offered a simple greedy strategy, where you would repeatedly invite
the person with the fewest number of enemies from among your friends who is
not an enemy of someone you have already invited, until there is no one left who
can be invited. Show that your relative’s greedy algorithm may not always result
in the maximum number of friends being invited to your party.

Applications

A-10.1 In the art gallery guarding problem we are given a line L that represents a long
hallway in an art gallery. We are also given a set X = {x0, x1, . . . , xn−1} of
real numbers that specify the positions of paintings in this hallway. Suppose that
a single guard can protect all the paintings within distance at most 1 of his or her
position (on both sides). Design an algorithm for finding a placement of guards
that uses the minimum number of guards to guard all the paintings with positions
in X .

A-10.2 Consider a single machine scheduling problem, where we are given a set, T ,
of tasks specified by their start times and finish times, as in the task scheduling
problem, except now we have only one machine and we wish to maximize the
number of tasks that this single machine performs. Design a greedy algorithm
for this single machine scheduling problem and show that it is correct. What is
the running time of this algorithm?

A-10.3 A floating-point number is a pair, (m, d), of integers, which represents the num-
ber m × bd, where b is either 2 or 10. In any real-world programming environ-
ment, the sizes of m and d are limited; hence, each arithmetic operation involving
two floating-point numbers may have some roundoff error. The traditional way
to account for this error is to introduce a machine precision parameter, ǫ < 1,
for the given programming environment, and bound roundoff errors in terms of
this parameter. For instance, in the case of floating-point addition, fl(x + y), for
summing two floating-point numbers, x and y, we can write

fl(x + y) = (x + y) · (1 + δx,y),

where
|δx,y| ≤ ǫ.

Suppose we are given a set of positive floating-point numbers, {x1, x2, . . . , xn},
and we wish to sum up all these numbers. Any such summation algorithm can
be modeled with a binary expression tree, T , that has each xi associated with
one of its external nodes, with each internal node, v, representing the floating-
point sum of the floating point numbers computed by v’s children. Given the
machine-precision approach to bounding floating-point errors, and assuming that
ǫ is small enough so that ǫ2 times any floating-point number is negligibly small,
then we can use a term, en, to estimate an upper bound for the roundoff error for
summing these numbers using the tree T as

en = ǫ

n
∑

i=1

xid(vxi
),



10.4. Exercises 301

where vxi
is the external node associated with xi and d(vxi

) is the depth of this
node in T . Design an efficient algorithm for constructing the binary expression
tree, T , that minimizes en. What is the running time of your method?

A-10.4 Whenever a word processor or web browser displays a long passage of text, it
must be broken up into lines of text that are displayed one on top of the other.
Determining where to make these breaks is known as the line breaking problem.
The most natural place to make such breaks are between words. So, suppose you
are given a sequence, W , of n words, W = (w1, w2, . . . , wn), where each word,
wi in W , has a given length, li. Also, for the sake of simplicity, let us ignore
any spaces or punctuation that might come before or after any of these words.
Suppose further that you are given a line length, L, that is an upper bound on
the sum of the lengths of words that can fit on a single line. We specify how
to break W into lines, by a sequence of indices, (i1, i2, . . . , ik), where i1 = 1,
ik = n, to indicate that we should break W into the lines, wij

. . . wij+1−1), for
j = 1, 2, . . . , k − 1, subject to the constraints that ij < ij+1 and

ij+1−1
∑

r=ij

lr ≤ L.

In addition, define the penalty for such a set of line breaks to be

k
∑

j=1

∣

∣

∣

∣

∣

∣

L −

ij+1−1
∑

r=ij

lr

∣

∣

∣

∣

∣

∣

.

Describe an efficient greedy algorithm for breaking a sequence of words, W , into
lines and prove that your method minimizes this penalty. What is the running
time of your method?

A-10.5 Consider the line breaking problem from the previous exercise, but now consider
changing the penalty for line breaks, so that it is now

k
∑

j=1

⎛

⎝L −

ij+1−1
∑

r=ij

lr

⎞

⎠

2

.

Show that a greedy strategy of scanning W from beginning to end and making
the choice that minimizes the term,

⎛

⎝L −

ij+1−1
∑

r=ij

lr

⎞

⎠

2

,

based on previous choices, while maintaining each line to be of length at most L,
does not necessarily result in an optimal set of line breaks.

A-10.6 In the 2003 California gubernatorial recall election, the ballot contained 135 can-
didates, including people with various listings for their current job, including
“actor,” “comedian,” and even “adult film actress.” The winner was the actor-
businessman Arnold Schwarzenegger, who got over 48% of the vote. Suppose



302 Chapter 10. The Greedy Method

we have the election results from such an election, with a large number, n, of
candidates, and the only tool we can use to determine the winner is to encode
the names of all the candidates using the Huffman coding algorithm, based on
the number of votes each candidate got in this election. Suppose further that a
friend of yours is guessing that if the winning candidate gets more than 40% of
the votes, then his or her name will be encoded with a single bit. Prove that this
conjecture is true and analyze the running time of this election-counting algo-
rithm.

A-10.7 When data is transmitted across a noisy channel, information can be lost during
the transmission. For example, a message that is sent through a noisy channel as

“WHO PARKED ON HARRY POTTER’S SPOT?
′′

could be received as the message,

“HOP ON POP
′′

That is, some characters could be lost during the transmission, so that only a
selected portion of the original message is received. We can model this phe-
nomenon using character strings, where, given a string X = x1x2 . . . xn, we say
that a string Y = y1y2 . . . ym is a subsequence of X if there are a set of indices
{i1, i2, . . . , ik}, such that y1 = xi1 , y2 = xi2 , . . ., yk = xik

, and ij < ij+1, for
j = 1, 2, . . . , k − 1. In a case of transmission along a noisy channel, it could be
useful to know if our transcription of a received message is indeed a subsequence
of the message sent. Therefore, describe an O(n + m)-time method for deter-
mining if a given string, Y , of length m is a subsequence of a given string, X , of
length n.

Chapter Notes

The term “greedy algorithm” was coined by Edmonds [63] in 1971, although the concept
existed before then. For more information about the greedy method and the theory that
supports it, which is known as matroid theory, please see the book by Papadimitriou and
Steiglitz [169]. The application of the greedy method we gave to the coding problem comes
from Huffman [108].


